
Bangladesh J. Bot. 45(3): 659-667, 2016 (September) 

MULTIVARIATE PATTERN RECOGNITION OF DIFFERENT VARIETIES' 
LAVENDER BY HEAD SPACE-SOLID PHASE MICROEXTRACTION 

WITH GAS CHROMATOGRAPHY 
 

JUN TANG*, JIHONG FU, HONG TONG AND XIANG LIAO 
 

Center for Physical and Chemical Analysis, Xinjiang University, Urumqi, P. R. China 
 
Key words: Lavender, Head space-solid phase, Microextraction, Principal component analysis, 

Partial least squares-discriminate analysis 
 

Abstract 
 Head space-solid phase microextraction (HS-SPME) coupled with gas chromatography (GC) has been 
applied for the identification of the characteristic volatile profile of lavender with the aim to study its varieties 
from Yili Xinjiang areas. Quantitative determinations of lavender samples’ common peaks were carried out by 
GC with flame ionization detection (GC-FID) and qualitative analysis by GC with mass spectrometry 
(GC-MS). Principal components analysis (PCA) showed group clustering of three types of lavender varieties 
using GC-FID data. Partial least squares-discriminant analysis (PLS-DA) models had excellent classification 
sensitivity both for the calibration set and for the test set samples. The PLS-DA method was evaluated by the 
statistical indices of the correct recognition rate. Results showed that PLS-DA model were much better than 
PCA in classificatory abilities. It could successfully identify the complex nonlinearity and correlations among 
input variables and minimize them. The proposed chemometric methods illustrating the very plummy 
multivariate classification models, it proved to be an effective strategy for identifying the varieties of lavender, 
especially give a feasible method in the lavender quality control for use in medicine. 
 
Introduction 
 Lavender (Lavandula angustifolia Mill.) is one of the most widely cultivated species in Europe, 
the Middle East, Asia and Northern Africa (Zheljazkov et al. 2012). The traditional uses of lavender 
range from use as an aromatic toan antimicrobial agent in perfume, food and pharmaceutical 
industry. For example, lavender is applied commercially in the fragrance industry, including soaps, 
perfumes, skin lotions and other cosmetics. It is also employed in food manufacturing, such as 
flavoring beverages, ice cream, candy, chewing gum and so on (Zuzarte et al. 2010). It is 
well-known that lavender could provide people with sedative and anti-depressive effects, such as 
relaxing the tight muscles, or releasing the pain of burns and insect bites.It has become one of the 
most important traditional herbal medicine and has significant economic value. These days, people 
found out that the effective ingredients are those volatile aromatic compounds with various 
functional groups abundantly present in lavender (Hancianu et al. 2013). 
 Lavender and its oil have been reported to contain large quantities of terpenes and aromatic 
compounds, with linalool, linalyl acetate, lavandulyl acetate, camphor and 1,8-cineole being the 
predominant (Danh et al. 2012). Specifically, linalool and linalylacetate, key active components of 
lavender, are reported to have an effect on glutamatergic system, enhances the release of dopamine 
from rat brain striatum slices. These organic compounds occur in varying amounts depending on 
harvest seasons, the extraction methods and species (Fismer et al. 2012, Chioca et al. 2013). In 
addition, lavender’s chemical compositions vary significantly in terms of varieties. Therefore, 
analytical techniques and new methods are needed to develop an evaluation system to assess the 
systematic of the natural plant. 
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 Solid phase microextraction (SPME) has been suggested as an alternative technique for the 
extraction of chemical composition. It permits both the qualitative and quantitative analysis of 
sampling simultaneously (Popiel et al. 2011). Depending on the specific objectives, the large 
amount of data obtained by HP-SPME-GC-FID makes it necessary to use multivariate methods. In 
this work, derived parameters from the chromatogram such as peak areas were used. When faced 
with these high-dimensional data, PCA is often used to reduce the dimension by creating a new set 
of uncorrelated variables to form a super matrix, which corresponds to Eigen vectors of the sample 
covariance matrix (Dupuy et al. 2010). As compared to multivariate calibration methods based on 
latent variables, PLS-DA has advantages in terms of simplicity and ease of interpretation. The aim 
of this work was to attempt HP-SPME-GC as one of the key analytical tools, combined with 
chemometrics for identifying the species to meet the quality control requirements for use in herbal 
drugs. Multivariate data analysis was employed for identification and classification of lavender 
varieties using the GC-FID peak areas. 
 
Materials and Methods 
 Lavender flower samples (n = 59) were harvested during the growing season in 2012. Lavender 
cultivars, C-197(2) lavender (n = 15), French blue lavender (n = 29) and H-701 lavender (n = 15) 
were purchased from the farming herd round field in Yili Xinjiang region. Doctor Junwei Yang 
identified it as lavender genus. The lavender samples were shattered before used and packed in 
special plastic packet to avoid the loss of aroma. Samples stored at 4ºC until the analysis. 
 The volatile fraction of lavender was monitored by using the HS-SPME technique. SPME 
parameters were adjusted through a series of optimization studies, including SPME fiber type, 
length of exposure, and volume of head space. The volatile organic components were extracted from 
the head space of the vials using the best conditions at last. The fibre was purchased from 
SUPELCO(USA). It was coated with 50/30 µm of divinylbenzene/carboxen/polydimethylsiloxane 
(DVB/CAR/PDMS) and previously conditioned before inserting it into the GC-FID injector at 
250ºC for 30 min. 
 For each SPME analysis, 0.16 g lavender sample was placed in a 30 ml glass vial and put in a 
warm water bath (69ºC). The fibre was inserted in the head space and maintaining for 92.12 min and 
then removed from the vial. For the desorption of compounds the fibre inserted into the GC-FID 
injector at 250ºC for 5 min. 
 The GC-FID (Agilent Technologies, 5890 GC-FID) measurements were performed by using a 
PET-5 capillary column (30 m, 0.25 mm I.D., 0.25 µm film thickness). Oven temperature was kept 
at 50ºC held steady for 5 min, programmed to 246ºC at a rate of 3ºC/min, and then held steady for 5 
min. Injector and detector temperatures were kept at 250 and 280ºC, respectively. The nitrogen 
(99.99%) was used as carrier gas at a constant flow rate of 1.0 ml/min. Flow rates of hydrogen and 
air were kept at 30 and 300 ml/min, respectively.  
 GC-MS (Shimadzu Corporation, GC/MS-QP 2010) analyses were performed using the same 
column and chromatographic conditions. The helium (99.99%) was used as carrier gas with a total 
flow of 1.16 ml/min. The injector temperature was 250ºC and the injection mode was split less. The 
detector temperature was 280ºC and the acquisition mode was full scan (from 30 to 500 m/z). The 
target compounds were identified based on GC-FID retention times using the NIST147 and 
WILEY7 standard mass spectra library. 
 Only one side of the original data is represented in a low-dimensional sub space, useful 
information may be lost (Gennebäck et al. 2013). Multivariate analysis is a tool used to bring out 
pertinent information from a matrix of either physical or chemical measurements. The methods 
allow valuable information to be extracted from multivariate data arrays. PCA, often used as 
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pre-processor, the most important application was the reduction of the number of variables (scores) 
and the representation of a multivariate data table in a low dimensional space (Ciosek et al. 2006, 
Felipe-Sotelo et al. 2008). Principal components (PCs) are linear combinations of the original ones 
and can be interpreted like spectra, the portion of data for classification does not coincide with that 
of maximum correlation, or in PCA language that carrying the maximum portion of variance. 
 Supervised and unsupervised methods are two types of dimension reduction algorithms. In 
contrast to unsupervised PCA, supervised PLS-DA was based on the relation between spectral 
intensity and sample characteristics, which should have an initial knowledge of the classes of the 
sample set (Worley et al. 2013, Ivorra et al. 2013). The classes are defined based on a priori 
information of the system or by an exploratory analysis, for example, using PCA (Almeida et al. 
2005). For PLS-DA classification, the class (one of M) of each sample was coded with a (binary) 
vector of length M with 0 and 1. The M predicted scores by the ordinary PLS-DA method are used to 
predict the class of each sample (Balabin et al. 2011). PLS-DA does not allow attributing a sample to 
other groups than the ones first defined. As a consequence, all measured variables play the same role 
with respect to the class assignment (Galtier et al. 2011, Guzmán et al. 2013). PLS-DA yields 
graphical displays and offers interpretation tools that enable investigating the structure of the 
sensory data. Within the modeling, a strong emphasis was placed on the plotting of model 
parameters scores, weights, etc. In this work, loading plot and regression model diagram were 
employed to show the importance of variables while building the models and the separation of 
different kinds of lavender samples, respectively. 
 PLS-DA is often compared to PCA in terms of its ability to classify data or to discriminate 
between different groups (Hobro et al. 2010). The X matrix is the PCA scores; the Y matrix is 
constructed on columns of binary numbers where 1 represents the sample member of a class and 0 if 
it is not a member. The sample membership of a class is then modeled and predicted as a 0 or 1 
within a threshold limit of usually 0.5. Diagnostic plots of different thresholds will reveal the 
stability of the classifications. Due to the high number of correlated variables in a PLS model, it is 
essential to determine the correct number of components to reduce the risk for over fitting (Fongaro 
et al. 2013). Therefore, it is necessary to test the model performance of each PLS-DA component 
and select the optimal number of components. The parameters of PLS-DA model were optimized 
using cross-validation conditioned on the training data set (Mannina et al. 2010). It is of vital 
importance to monitor the root mean square error (RMSE) of the predicted values when chose the 
correct the number of factors. 
 Fifty nine lavender samples’ GC-FID common peak areas were normalized to the internal 
standard areas before the statistical analysis. The relative abundance of each sample was found by 
dividing the peak area between the total areas of all the components. The determined original 
chromatographic profiles were organized into a matrix as input variables, employing PCA, PLS-DA 
procedures to differentiate these samples. PCA and PLS-DA data analysis was carried out by using 
Simca-P software (version 13.0, 2011; Umetrics, Umeå, Sweden).  
 
Results and Discussion 
 GC-FID was used to reveal the relationship among the different lavender samples based on 
compositions of head space compounds. By comparing retention times, totally 15 common peaks 
were discovered (Table 1). Each compound was further confirmed by GC-MS. The optimized 
HP-SPME-GC/MS method was applied in order to characterize the volatile profile of lavender 
samples. From the data, 15 common volatile organic compounds were extracted from the head space 
of lavender samples. Fig. 1 is the total ion chromatogram of C-197(2) lavender sample. In order to 
obtain clear differences between the samples, the determined compounds’ relative peak areas were 
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used as initial variables. Therefore, the signal of GC-FID is a data matrix (15 variables × 59 lavender 
samples = 885 data) that is obtained. Then it was analyzed using multivariate pattern recognition 
methods. 
 

Table 1. The common peaks information of 59 lavender samples. 
 

No. Chemical name No. Chemical name No. Chemical name 
1 2-methylbutyl 

p-decyloxybenzylidene 
p-aminocinnamate 

6 linalyl acetate 11 trans-caryophyllene 

2 linalool oxide 7 neryl acetate 12 3,16-diacetyl pseudo solasodine 
3 trans-linalool oxide 8 8-acetoxy linalool 13 beta-farnesene 
4 linalool 9 limonene oxide 14 hotrienyl acetate 
5 butyric acid-3-hexenyl ester 10 farnesal 15 andcaryophyllene oxide 
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Fig. 1. Total ion chromatogram of C-197(2) lavender sample. 

 
 PCA only captures linear relations and does not pick the nonlinear relations. The extracted 
features are orthogonal and variant under transformation. A non-surveillance method was applied to 
visualize the data trends and to provide a first evaluation of the discriminant efficiency of the 
variables. 
 Applying PCA on the composed of data matrix, four components contributing the most to their 
formation were extracted, representing jointly 85.72% of the whole system variance. Thus, the first 
4PCs reduced the 15-dimensional data set to a four-dimensional data set, with 14.28% loss of detail. 
The samples have been well separated in the score plot of the first two principal components, the 
first and second principal components describing 44.10% and 17.25% of the variability in the 
original observations, respectively, while both principal components account for 61.35% of the total 
variance. This analysis, therefore makes it possible to identify the measured variables that best 
explain the architectural variability observed. 
 Fig. 2 is the score plot of PC1vs PC2 for PCA-X of lavender samples. It was apparent that all 
samples were mixed scattered in score plot. Most of the cultivars could be generally separated from 
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each other. It sorted into a clear separation of three differentiated groups (A, B and C) except for one 
of C-197(2) lavender sample (A7). PC1 positive value area differentiates the French blue cultivars 
from the C-197(2) lavender and H-701 lavender. Whereas PC1 negative value and PC2 positive 
value differentiate the H-701 lavender cultivars from the other two. Both PC1 and PC2 negative 
values differentiate the C-197(2) lavender cultivars from the other two, only A15, B14, C15 samples 
were wrongly classified to some extent. It was proved that these three samples were grouped in the 
cluster that did not belong to its classification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The score plot for PCA-X of lavender samples (A: C-197(2) lavender, B: French blue 

lavender, C: H-701 lavender), the number is the same as the cultivars in supplement data.  
 
 As is well known, the PCA score plots provide useful information on the clustering of samples. 
The new variables were summarizing the X-variables that represent the PC1, PC2, etc. The first 
component explains the largest variation of the X space, followed by PC2, etc. Hence, the scatter 
plot of PC1 vs. PC2 was a window in the X space, displaying how the X observations are situated 
with respect to each other. This plot shows the possible presence of outliers, groups, similarities and 
other patterns in the data. The score plot was a map of the observations showed a clear histological 
classification that a two-dimensional window indicates grouping lavender samples into three 
clusters, a clear separation between C-197(2), French blue, H-701lavender categories, respectively. 
 The PLS-DA loading weights scatter plot displays the relation between the X and the 
Y-variables. To facilitate interpretation this plot by default symbol coded according to the model 
terms. X-variables situated in the vicinity of the dummy Y-variables have the highest discriminatory 
power between the classes. The plot is for the first and second components of the PLS-DA model. 
As shown in the graphic (Fig. 3A), there were 15 common compounds. Some compounds showed 
discriminating capability between the three kinds of lavender samples, the variables that mainly 
affect the separation between the different varieties of lavender. It was evident in the loading plot 
that C-197(2) variety was discriminated from the other two varieties of lavender by having positive 
values on PC1 and negative values on PC2, which exclusively contains farnesal, 3,16-diacetyl 
pseudo solasodine. French blue, was clustered by a negative values on PC1 due to high content of 
2-methylbutyl p-decyloxybenzylidene, p-aminocinnamate, trans-linalool oxide, butyric 
acid-3-hexenyl ester, beta-farnesene, hotrienyl acetate, caryophyllene oxide to separate it from the 
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other two. H-701 was clustered by having positive values on PC1 and PC2 due to high content of 
linalool,  trans-caryophyllene to separate it from the other two. From the result of loading weights 
scatter plot, we can learn that the compounds correlated with different varieties of lavender. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. PLS-DA loading weights scatter plot of the variables in the first two principal components and 

calibration set of regression model diagram (A: C-197(2), B: French blue, C: H-701), (A) The PLS-DA 
loading weights scatter plot displays the relation between the X and the Y-variables. The above w*c plot is 
a superimposition of the w* plot and the c plot, for the first and second components of the PLS-DA model. 
(B) Regression model diagram for discriminating C-197(2) lavender from French blue and H-701.             
(C) Regression model diagram for discriminating French blue lavender from C-197(2) and H-701.            
(D) Regression model diagram for discriminating H-701 lavender from French blue and C-197(2). 

 
 PLS-DA has one dummy Y variable per class with values of 1 or 0 depending on whether the 
observation belongs to the class or not. An ordinary PLS-DA analysis is made with this Y matrix 
with the X matrix containing the data characterizing the observations and classes. It is robust to 
colinearity issues and the noise and specific features of the training data not relevant to the problem 
under concern by tuning the number of latent variables used by the model. With less good models, 
the points are scattered around the regression line as in the plot below. PLS-DA played a significant 
role in discriminating samples that requires the data of interest to be splitted into two data sets, a 
calibration set and a validation set. When investigating lavender species, the calibration set 
comprised 42 samples and the validation set comprised of 17 samples. 
 The graphic (Fig. 3B, C, D) also displays the observed versus predicted values of the selected 
Y-variable. With a good model, all the points will fall close to this 45 degree line. The plot shows an 
example of a good model. C-197, French blue and H-701 species changed as Y-variable, all the 
calibration set samples ranged at 0.5 - 1.5 in M length, that indicating all the samples were classified 

A B 

D C 
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correctly. Good results hold also when using the three different validation sets, the different cultivars 
were clearly separated from each other. It indicated that the success of the statistical tool for the 
recognition of the cultivars under study. Thus, PLS-DA model seems as well promising in view of 
discriminating the species. 
 Table 2 shows the classification parameters (RMSEE, RMSEP, R2) and the percentage of the 
discrimination rate and prediction rate. As shown in Table1, all the calibration set objects have been 
correctly classified, leading to a correct discrimination among the different groups. The root mean 
square error of estimation (RMSEE) in the footer indicates the fit of the observations to the model. 
The R2 value of the regression line indicates the goodness of fit. These results showed that the 
generated models have leading to a correct discrimination among the different groups. 
 

Table 2.  Identification efficiency of lavender samples with PLS-DA model, including calibration and 
validation sets. 

 

Sample set  C-197(2) French blue H-701 
Calibration set R 0.8831 0.9477 0.8763 
 RMSEE 0.1531 0.1201 0.1575 
 Discriminant rate  100% (42/42)  
Validation set R 0.8798 0.9372 0.8120 
 RMSEP 0.1956 0.1364 0.1993 
 Predict rate 94.12% (16/17) 

 
 Cross validation was performed using random subsets meaning that each test set is formed from 
a random selection of objects such that a single object is only included in one test set. The number of 
latent variables selected for each model was determined by which giving the smallest root mean 
squared error of prediction (RMSEP). Three components were obtained by 20 times cross- 
validation. Fig. 4A, B, C) was permutation validation of the PLS-DA model. R2, a measure of fit, i.e. 
how well the model fits the data, is the percent of variation of the training set explained by the model. 
Q2 is the percent of variation of the training set predicted by the model according to cross validation. 
Q2 indicates how well the model predicts new data. The idea of this validation is to compare the 
goodness of fit (R2 and Q2) of the original model with the goodness of fit of several models based on 
data where the order of the Y-observations has been randomly permuted, while the X-matrix has 
been kept intact. 
 The plot shows, for a selected Y-variable, on the vertical axis the values of R2 and Q2 for the 
original model (far to the right) and of the Y-permuted models further to the left. The horizontal axis 
shows the correlation between the permuted Y-vectors and the original Y-vector for the selected Y. 
The original Y has the correlation 1.0 with itself, defining the high point on the horizontal axis. 
 The plot above strongly indicates that the original model was valid. The criteria for validity: all 
Q2-values to the left are lower than the original points to the right, the regression line of the 
Q2-points intersects the vertical axis (on the left) at, or below zero. Note that the R2-values always 
show some degree of optimism. However, when all R2-values to the left are lower than the original 
point to the right, this was also an indication for the validity of the original model. From Figs 4A, B, 
C), all Q2and R2 values were higher in the permutation test than in the real model, revealing great 
predictability and goodness of fit. 
 The test set indicating a good predictive ability of the derived model. From results reported in 
Table 2, the selection of specific calibration subsets improved the prediction performance of the 
PLS-DA models in lavender samples as reflected by the RMSEP values. Although some samples 
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were overlapped in the PCA (Fig. 2), all samples were clearly separated in the PLS-DA model (Fig. 
3B, C, D). It indicated that non-correlated variation in X variables (the analyzed compounds) to Y 
variables (lavender variety) resulting in maximum separation in the PLS-DA model. It was not 
surprising that PLS-DA behaves better than PCA, e.g. sample A15, B14 and C15 were wrongly 
classified in PCA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Permutation validation of the PLS-DA model, indicating great predictability (Q2) and goodness of fit 
(R2) of models leading to a correct discrimination. (A) The result of C-197(2) lavender. (B) The result of 
French blue lavender. (C) The result of H-701 lavender. 

 

 In summary, the results demonstrated that the specific HS-SPME-GC method combined with 
PCA and PLS-DA can effectively classify and identify the lavender samples by using the 
composition of volatile compounds. Moreover, PLS-DA was more efficient for the study of these 
types of data than unfolding PCA, as it offers an easier visualization of the data structure, in 
particular capturing the trends that are common to the different lavender in the samples mode plot. 
The results obtained can provide a useful comprehensive evaluation for lavender quality and give a 
reference for medicinal herb quality control. Through a standardized control, the variety of lavender 
will be improved. 
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